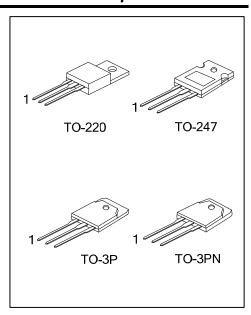
UG25N120

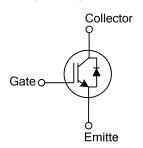
Preliminary

Insulated Gate Bipolar Transistor

1200V NPT TRENCH IGBT

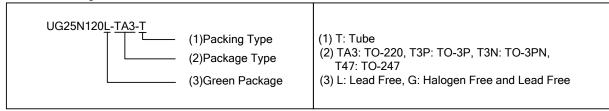

DESCRIPTION

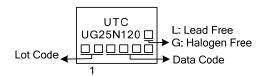
The UTC **UG25N120** is an NPT ignition Insulated Gate Bipolar Transistor. it uses UTC's advanced technology to provide customers with high switching speed, high avalanche ruggedness, low saturation voltage and low switching loss, etc.


The UTC **UG25N120** is suitable for the resonant or soft switching applications.

■ FEATURES

- * High switching speed
- * High avalanche ruggedness
- * Low saturation voltage: $V_{CE(sat), typ}$ =2.0V @ I_C=25A and T_C =25°C
- * Low switching loss: Eoff, typ=0.96mJ @ I_C=25A and T_C=25°C


■ SYMBOL


■ ORDERING INFORMATION

Ordering Number		Daakaga	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UG25N120L-TA3-T	UG25N120G-TA3-T	TO-220	G	C	Е	Tube	
UG25N120L-T3P-T	UG25N120G-T3P-T	TO-3P	G	C	Е	Tube	
UG25N120L-T3N-T	UG25N120G-T3N-T	TO-3PN	G	C	Е	Tube	
UG25N120L-T47-T	UG25N120G-T47-T	TO-247	G	С	Е	Tube	

Note: Pin Assignment: G: Gate C: Collector E: Emitte

■ MARKING

<u>www.unisonic.com.tw</u> 1 of 4

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	RATINGS	UNIT	
Collector-Emitter Voltage		V_{CES}	1200	V	
Gate-Emitter Voltage		$V_{\sf GES}$	±20	V	
T _C =25°C			50	Α	
Continuous Collector	Continuous Collector Current		I _C	25	Α
Collector Current Pul	sed (Note 1)		I _{CM}	75	Α
Diode Continuous Forward Current (T _C =100°C)		l _F	25	Α	
Diode Maximum Forward Current		I _{FM}	150	Α	
Power Dissipation	T _C =25°C	TO-220	P _D	89	W
		TO-247		200	W
		TO-3P/TO-3PN		312	W
Operating Junction Temperature		T_J	-55~+150	°C	
Storage Temperature Range		T _{STG}	-55~+150	°C	

Notes: 1. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

Absolute maximum ratings are those values beyond which the device could be permanently damaged.

■ THERMAL CHARACTERISTICS

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient	TO-220		62.5	°C/W
	TO-247	θ_{JA}	40	°C/W
	TO-3P/TO-3PN		35	°C/W
	TO-220		1.4	°C/W
Junction to Case	TO-247	θ_{JC}	0.62	°C/W
	TO-3P/TO-3PN		0.4	°C/W

^{2.} Pulse width limited by maximum junction temperature.

■ **ELECTRICAL CHARACTERISTICS** (T_C=25°C, unless otherwise noted)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT	
Off Characteristics								
Collector Cut-Off Current	I _{CES}	V _{CE} =V _{CES} , V _{GE} =0V			3	mΑ		
G-E Leakage Current	I _{GES}	V _{GE} =V _{GES} , V _{CE} = 0V				±250	mΑ	
On Characteristics					_			
Gate to Emitter Threshold Voltage	V _{GE(TH)}	I _C =25mA, V _{CE} =V _{GE}		3.5	5.5	7.5	V	
		I _C =25A, V _{GE} =15V			2.0	2.5	V	
Collector to Emitter Saturation Voltage	V _{CE(SAT)}	I _C =25A, V _{GE} =15V, T _C =125°C			2.15		V	
		I _C =50A, V _{GE} =15V			2.65		V	
Dynamic Characteristics				_	_			
Input Capacitance	CIES				3700		pF	
Output Capacitance	C _{OES}	V_{CE} =30V, V_{GE} =0V,		130		pF		
Reverse Transfer Capacitance	C _{RES}			80		pF		
Switching Characteristics								
Turn-On Delay Time	t _{DON)}				50		ns	
Rise Time	t _R				40		ns	
Turn-Off Delay Time	t _{DOFF)}	V _{CC} =600V, I _C =25A	, R _G =10Ω,		190		ns	
Fall Time	t _F	V _{GE} =15V, Inductive	Load,		180		ns	
Turn-On Switching Loss	E _{ON}	T _C =25°C			4.1	6.2	mJ	
Turn-Off Switching Loss	Eoff				0.96	1.5	mJ	
Total Switching Loss	E _{TS}				5.06	7.7	mJ	
Turn-On Delay Time	t _{DON)}				50		ns	
Rise Time	t _R				60		ns	
Turn-Off Delay Time	t _{DOFF)}	V _{CC} =600V, I _C =25A	, R _G =10Ω,		200		ns	
Fall Time	t _F	V _{GE} =15V, Inductive	Load,		154		ns	
Turn-On Switching Loss	Eon	T _C =125°C			4.3	6.9	mJ	
Turn-Off Switching Loss	E _{OFF}			1.5	2.4	mJ		
Total Switching Loss	E _{TS}				5.8	9.3	mJ	
Total Gate Charge	Q_{G}				200	300	nC	
Gate-Emitter Charge	Q_GE	V _{CE} =600V, IC=25A	, V _{GE} =15V		15	23	nC	
Gate-Collector Charge	Q_GC			100	150	nC		
SOURCE- DRAIN DIODE RATINGS AND	CHARACTE	RISTICS						
Forward Voltage Drop	\/	I _F =25A	T _C =25°C		2.0	3.0	V	
Forward Voltage Drop	V_{FM}		T _C =125°C		2.1		V	
Deverse Deservery Times	t _{rr}		T _C =25°C		235	350	ns	
Reverse Recovery Time			T _C =125°C		300		ns	
Deals Deverse Deserver Course	I _{rr}	I _F =25A,	T _C =25°C		27	40	Α	
Peak Reverse Recovery Current		dI/dt=200A/μS	T _C =125°C		31		Α	
Doverse Decement Character			T _C =25°C		3130	4700	nC	
Reverse Recovery Charge	Q _{rr}		T _C =125°C		4650		nC	

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.